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Modeling CSP with thermal energy storage
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Inner, dispatch MIP optimization

I Example variables:

y csb
t = 1 if cycle is in standby mode at time t; 0 otherwise

y rsup
t = 1 if receiver is starting up at time t and was not in standby

mode at time t − 1; 0 otherwise

I Example constraints:
I Standby and start-up modes can’t coincide
I Total power produced by the receiver must account for both the
available energy and any start-up energy consumption

I Objective:
I (electricity price)(power generated) - (parasitic losses) - (penalties)

I Penalties: cycle start-up, receiver start-up, and change in electricity
production between time steps
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Modeling CSP with thermal energy storage
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Outer optimization
Design variables:
I Tower height
I Receiver diameter
I Receiver height
I Receiver DNI design point
I Solar multiple
I Cycle design point conversion efficiency
I Cycle design point power output
I TES capacity
I Mirror degradation replacement threshold
I Number of panels per heliostat (even integer)
I Number of full-time staff available for heliostat repairs (integer)
I Number of full-time staff available for mirror washing (integer)
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Outer optimization

I Evaluate the performance of a given CSP plant (with TES) using
NREL’s System Advisor Model (SAM)

I Initial objective: optimize the revenue produced by SAM

I We don’t want to treat this as just a “black-box”

I Much can be gained by exposing the problem structure to the
optimization algorithm
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Exposing structure
For example, say one wants to solve:

minimize f (x) = (f1(x)− T1)
2 + (f2(x)− T2)

2
,

where f1, f2 are outputs from an expensive numerical simulation.

I Assume fi : R→ R and
[
T1(x)
T2(x)

]
=

[
0
0

]

I If
[
f1(a)
f2(a)

]
=

[
−1
1

]
and

[
f1(b)
f2(b)

]
=

[
1
−1

]
,

I then f (a) = 2 and f (b) = 2.

Let the optimization method model fi and combine the model
information to construct descent directions. This should do no worse
(and very often better) than just modeling f .
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Initial objective

I Maximize Revenue: Minimize

−Sales + Costs
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More exact objective description
R = fe(x)

+fd(sd(x))+fh(sh(x , sd , ξh))+fo(so(x , sd , ξo))+fp(sp(x , sh, so))

fe : Explicit (known) costs
I Tower cost, receiver cost, O&M costs

sd : Design simulation
I Call SolarPILOT to create a heliostat field

sh: Heliostat failure simulation
I Simulate heliostat failure due to mechanical, electrical events

so : Optical degradation simulation
I Simulate mirror soiling and optical degradation

sp: Plant production
I Average over a set of fixed scenarios
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More exact objective description

I Revenue isn’t the best objective
I $1M plant making $10M vs. $1B plant making $5B

I True objective fT is some iterative calculation of the outputs of
fe , fd , fh, fo , and fp.

I fT (fe , fd , fh, fo , fp)

I Can get adjoint/derivative code for fT (and all other f ) via
algorithmic differentiation.

I Then gradient at a point x just involves a chain rule calculation.

I Model sd via a model md and replace ∇sd with ∇md .
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Example model

Figure: Interpolation model of a two-dimensional function.
14 of 15.



Final comments

I Exposing structure should allow for improved optimization results.

I Best way to handle integer variables?
I Optimizing revenue with a model-based method has already

improved previous-best parameters.
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